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Figure 1: The robot only influences the human’s actions in certain scenarios. (a) The robot can choose to walk towards the
human or move to its left to avoid the human. Both actions affect the human’s path. (b) The robot’s actions no longer affect the
human’s actions. (c) The human and the robot are clearing the table together. The robot reaches for the yellow mustard bottle,
and the human may reach for another item or continue to pick up the mustard. The robot influences the human’s actions. (d)
The human picked up the jello box. The robot’s actions in this state do not influence the human’s next action: move the jello.

ABSTRACT

In human-robot and multi-agent interaction, the ego agent models
the influence of its actions on the actions of the other agents to
better anticipate what the other agents will do next, facilitating
effective collaboration and enhanced safety. Prior work assumes
that the ego agent has influence in all states when in reality the
influence is only present in a subset of the scenarios. In this work,
we propose to detect causal influence by measuring the mutual

information of the ego agent’s actions and the other agent’s actions.

We evaluate our approach in a simulated pedestrian navigation
and a collaborative cooking game. Our results show that causal
influence detection is a promising approach, yet it may yield low
accuracy in situations where there is insufficient data.
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1 INTRODUCTION

In human-robot interaction, the standard method involves the robot
inferring the human’s intention and subsequently planning an
action to collaborate with the human [8, 17]. In practice, the human
is also inferring the robot’s intentions and modifying their actions
in response to the robot’s actions. For example, imagine that you
are walking down a hallway where a robot approaches from the
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opposite direction (Fig. 1a). If the robot immediately moves to the
side, you will continue to walk straight since you will not collide
with the robot. However, if the robot walks directly towards you,
you may suspect that the robot has faulty sensors or is in a hurry
and move out of the robot’s way.

To facilitate fluent interaction, the robot has to learn how its
actions will influence the human’s actions, otherwise, the robot’s
predictions of human intentions may be inaccurate, resulting in
suboptimal decision-making. Prior work on robots accounting for
the impact of their actions on the other agents’ actions assumes
that this influence occurs at fixed intervals [14, 16] or the entirety
of the interaction [6, 7]. In reality, the robot is only able to influence
other agent’s actions in certain scenarios. In the hallway navigation
example, once the robot passes the human, the robot doesn’t alter
the human’s path by changing lanes (Fig. 1b).

Learning when and how a robot can influence the actions of
other agents is beneficial for both learning and exploration. A major
challenge of multi-agent reinforcement learning (MARL) is the non-
stationarity of the environment due to the changing policies of other
agents. By taking into account the learning of other agents and
the cause-and-effect relationships of agent interactions, effective
agents can quickly adapt to non-stationary behaviors [6]. In the
context of reinforcement learning (RL), empowerment refers to
an agent’s ability to influence the future states given the current
state and the actions it can take [1]. In MARL, our approach can
empower agents to explore states with high influence over other
agents’ actions, leading to more effective cooperation [13].

In this work, we propose to use causal influence detection to
determine when a robot’s actions influence the human’s actions
by finding the existence of directed edges in a causal graph. We
extend the work by Seitzer et al. [12] which uses a measure of
causal influence based on conditional mutual information to detect
states where a single agent can influence the outcome of the next
state. We compute the mutual information between the human and
the robot’s actions and infer the presence of influence when this
value is above a predetermined threshold. To evaluate our approach,
we simulate pedestrian navigation using the Social Force Model
(SFM) [5] and compare the causal influence predictions with the
ground truth derived from the simulation. Furthermore, we train a
deep neural network on human-human and human-AI gameplay
from a collaborative cooking game to predict causal influence and
evaluate the model on held out test data. Our results show that
causal influence detection is a promising approach for identifying
when the actions of a robotic agent influence the actions of other
agents and generalizes well to unseen test data. However, it can
be inaccurate when the data does not sufficiently cover the full
support of the action distribution.

2 RELATED WORKS

Causal inference provides a framework for determining cause and
effect relationships from data. The causal relationships can be de-
scribed by a Causal Graphical Model (CGM), which is a directed
acyclic graph where an edge from node X to Y indicates that the
value of Y depends on the value of X. Given a CGM, one can explic-
itly reason about interventions by using the do operator to force
a variable X to take on value x [11]. In MARL, Foerster et al. [3]
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Figure 2: Causal graphical model of a single state transition.
(a) Each agent’s actions potentially influence the other agents’
actions. Our goal is to detect this influence by finding the
existence of the blue edges. (b) In a dyadic human-robot in-
teraction scenario, if the robot’s action AR does not influence
the human’s action A in state S, there is no arrow from AR
to A, (c) The blue arrow indicates that AR has influence on
A, (d) The agent’s actions have no influence on the actions
of the other agents because the social repulsive force rep-
resented by the green ellipses do not overlap. (e) If the Al
player moves up to pick up the onion, the human player may
move up to pick up the dish instead. AR has influence on A
in this state.

uses counterfactuals to address the challenges of multi-agent credit
assignment by marginalizing out a single agent’s actions. Meganck
et al. [10] introduces multi-agent causal models and proposes a
decentralized method for learning the global model. Other works
embed a causal model in the multi-agent framework and apply it to
applications such as healthcare, advertising, and traffic control [4].
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In contrast, our work uses causal discovery to learn a CGM that
determines whether a robot’s actions affects the human’s actions
in a specific state.

In human-robot interaction and MARL, prior work models the
influence of the robot’s actions on the other agents’ actions to
improve agent learning and adaptation. Kim et al. [7] proposes an
algorithm based on policy gradient and bellman update that allows
an agent to influence the long term stationary distribution of the
system. Kim et al. [6] introduces a policy gradient that includes an
extra optimization term for how an agent’s current actions affects
the other agents’ policy updates. Xie et al. [16] uses an autoencoder
to predict the human’s latent strategy and its dynamics given the
state and the robot’s actions. Wang et al. [14] trains the robotic
agent with an additional reward of stabilizing the human’s latent
strategy, predicted by an autoencoder, to address the challenge
of non-stationarity in MARL. Several works explored recursive
reasoning by modeling how the other agents would react to the ego
agent’s future behaviors [9, 15]. These works assume that the agent
influences the actions of the other agents across all states whereas
our paper challenges this assumption. Instead, we employ causal
influence detection to identify specific states where the robot has
the potential to influence the actions of other agents.

3 METHODS
3.1 Causal Graphical Models

To model multi-agent Markov decision processes, we use the Causal
Graphical Model (CGM) which consists of a set of random variables
V= {S,AI,AZ, .., A™ §’}, a graph G, and conditional distributions
p(vi|Pa(V;)) where Pa(V;) is the set of parents of V; (Fig. 2a). The
current state is represented by S, A’ is the action of the ith agent, and
S’ is the next state. The joint distribution of V, denoted as Py, can
be factorized as p(v1,....v)y|) = Hl‘:fll p(vi|Pa(V;)). In this paper,
we are interested in detecting whether an edge exists between the
agent’s actions. For dyadic human-robot teaming, AR has an edge
to A™ if the robot’s action influences the human’s actions in state

S (Fig. 2¢).

3.2 Causal Influence Detection

We extend Seitzer et al. [12], which proposes causal influence de-
tection through computing the mutual information, to detect ac-
tion influence in a multi-agent setting. The mutual information
I(AR; AM) is a measure of dependence between random variables
AR and AH and is zero for no dependence. Dk (+||-) denotes the
KL divergence. The mutual information I is defined as

Dir(p(AR, AFs)|Ip(AR]s) ® p(AH]s))
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We estimate the probability distributions from a dataset via visi-
tation counts. p(aR, atl|s) is the ratio of N(a®, af, s) to N(s) where
the numerator is the number of times actions aX and a' are exe-
cuted in state s and the denominator is the total number of times
state s is visited across all the data points. p(aR|s) and p(a'|s)
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are the marginal probability distributions and are computed by
summing p(aR, af|s) over all possible a” and a® respectively.

4 EXPERIMENTS

In our experiments, we aim to answer two questions: 1) Can mutual
information reliably detect states where the ego agent influences
the other agent’s actions? 2) How well does a neural network learn
causal influence detection and can it generalize to unseen states? To
answer the first question, we simulate pedestrians walking down a
hallway using the Social Force Model (SFM) [5]. From observing the
positions and actions of the pedestrians, we compute the mutual
information between the ego agent’s actions and the neighboring
pedestrians’ actions in each state and infer causal influence when
the value is above a predetermined threshold. To answer the second
question, we use human-human and human-AI gameplay data of
a collaborative cooking game called Overcooked [2]. We train a
neural network to learn causal influence determined by computing
mutual information of the robot and the human’s actions, and we
evaluate the model’s performance on held out test data. The neural
network consists of a single hidden layer comprising 64 units with
the ReLU (Rectified Linear Unit) activation function.

4.1 Social Navigation

We use the SFM introduced in [5] to simulate pedestrians walk-
ing down a hallway. According to SFM, a pedestrian’s motion is
influenced by its tendency to stay near the shortest path to its goal,
the motion of other pedestrians in its vicinity, the attraction it has
towards familiar objects, and the repulsion it has towards walls and
other obstacles in the environment. The territorial effect of each
pedestrian induces a repulsive force in the shape of an ellipse along
the direction of its motion. This force is a monotonic decreasing
function of the distance from that pedestrian.

We ran 10 trials with varying number of pedestrians randomly
initialized on each side of the hallway traversing towards the op-
posite side. A single entry in our dataset is of the form (S, A!, A?,
L) which denotes the joint state, the action of the ego agent, the
action of a neighboring agent, and the label indicating influence,
respectively. Let’s assume pedestrian H! is the ego agent. We find
the closest human to the ego agent, H. We then compute the dis-
tance vector from H! to H2, denoted as d@. We also find the closest
pedestrian to H?, denoted as H/, and compute the distance vector
from H? to H/, denoted as b. We include the orientation 6 of H'
and H? so the model can differentiate if the agents are walking
towards or away from each other. The joint state is then defined as
S=(@b, Oy, 05p2). The action for each pedestrian is obtained using
SFM and is a two-dimensional vector that consists of its change in
orientation, A9, and change in speed, Av. The action for the ego
agent is defined as A = (A@!, Av') and that of H? is defined as A?
= (A6?, Av?). For tractability, we discretize the joint state and the
action for both H! and H?. The label L is marked as 1 if H falls
in the repulsive force ellipse of H 2 otherwise 0. The tuple (S, Al
A?, L) is similarly computed with the second closest human to the
ego agent. This is repeated for every time step of the trial and by
treating every human as the ego agent.
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Figure 3: The Overcooked layouts that we used to analyze causal influence detection. The diverse layouts offer different
coordination strategies and thus varying levels of action influence.

Figure 4: We simulate pedestrian navigation using SFM and
use Eqn. 1 to detect causal influence. We compare the predic-
tions to the ground truth acquired from the SFM (influence
is present if the social repulsive forces overlap) and plot the
receiver operating characteristic curve. The model performs
similarly for different number of pedestrians but improves
when we filter out states with few interaction data.

4.2 Collaborative Cooking Task

Overcooked is a collaborative game where players place ingredients
into a pot and deliver the cooked dish to a serving station. Itis a
challenging collaboration game due to the variety of coordination
strategies available, requiring players to adapt to one another’s ac-
tions to achieve high scores. We use the grid world implementation
and the human-human and human-Al gameplay data collected by
Carroll et al. [2]. The dataset contains different environment lay-
outs, facilitating the emergence of diverse coordination strategies.
We use the train test splits provided by Carroll et al. [2] 1.

To get the ground truth binary labels, we compute mutual in-
formation of the human and the robot’s actions and infer causal
influence if the value is above 0.5.

5 PRELIMINARY RESULTS

5.1 Social Navigation

Figure 4 plots the receiver operating characteristic curve (ROC)
when simulating different number of pedestrians. The ROC curve
shows the performance of our causal influence detection at various
classification thresholds. The model performs similarly for different
number of pedestrians but improves when we filter out states with

Thttps://github.com/HumanCompatibleAl/overcooked_ai

Table 1: Performance of model predictions of causal influ-
ence in different Overcooked layouts on test data

Metric Asymmetric Counter Cramped Soup
Advantages  Circuit  Corridor Coordination

Precision 0.955 0.913 0.929 0.919

Recall 0.947 0.962 0.934 0.877

F1 Score 0.951 0.936 0.931 0.898

less than 8 interaction data points (labeled 10 pedestrians filtered).
This demonstrates that causal influence detection is less accurate
with few interaction data points, highlighting the importance of
employing strategies that collect informative data for improved
causal influence detection.

5.2 Collaborative Cooking Task

Table 1 shows the precision, recall, and F1 scores for the trained
neural network when evaluated on the test data for different Over-
cooked environments. The corresponding layouts are shown in
Figure 3. The trained model is able to generalize causal influence
detection to states unseen during training.

6 CONCLUSION

In this work, we propose using causal influence detection via a
measure of mutual information to detect an ego agent’s influence on
the actions of the other agents. We simulated pedestrian navigation
and showed that computing mutual information recovers some
of the states where influence is present but suffers from lack of
action diversity in the data. Through the analysis of human and Al
gameplay in Overcooked, we demonstrate the ability of a neural
network to predict causal influence on unseen test data.

Future work should investigate how causal influence detection
can be improved by incorporating it as an objective in the robot’s
decision making process. Furthermore, we want to investigate how
the knowledge of this interaction influence can enable a robotic
agent to better adapt and coordinate with humans and other agents.

ACKNOWLEDGMENTS

This work was supported by the Office of Naval Research under
Grant N00014-22-1-2482 and the Army Research Laboratory under
Grant W911NF-21-2-0126.

REFERENCES

[1] Arthur Aubret, Laetitia Matignon, and Salima Hassas. 2019. A survey on intrinsic
motivation in reinforcement learning. arXiv preprint arXiv:1908.06976 (2019).


https://github.com/HumanCompatibleAI/overcooked_ai

Causal Influence Detection for Human Robot Interaction HRI ’24 Causal-HRI Workshop, March, 2024, Boulder, CO.

[2] Micah Carroll, Rohin Shah, Mark K Ho, Tom Griffiths, Sanjit Seshia, Pieter Abbeel, In Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 36. 7664-7671.
and Anca Dragan. 2019. On the utility of learning about humans for human-ai [10] S. Meganck, S. Maes, B. Manderick, and P. Leray. 2005. Distributed learning
coordination. Advances in neural information processing systems 32 (2019). of multi-agent causal models. In IEEE/WIC/ACM International Conference on

[3] Jakob Foerster, Gregory Farquhar, Triantafyllos Afouras, Nantas Nardelli, and Shi- Intelligent Agent Technology. 285-288. https://doi.org/10.1109/IAT.2005.66
mon Whiteson. 2018. Counterfactual multi-agent policy gradients. In Proceedings [11] Jonas Peters, Dominik Janzing, and Bernhard Scholkopf. 2017. Elements of causal
of the AAAI conference on artificial intelligence, Vol. 32. inference: foundations and learning algorithms. The MIT Press.

[4] StJohn Grimbly, Jonathan Shock, and Arnu Pretorius. 2021. Causal multi-agent re- [12] Maximilian Seitzer, Bernhard Schélkopf, and Georg Martius. 2021. Causal influ-

inforcement learning: Review and open problems. arXiv preprint arXiv:2111.06721
(2021).

Dirk Helbing and Peter Molnar. 1995. Social force model for pedestrian dynamics.
Physical review E 51, 5 (1995), 4282.

Dong Ki Kim, Miao Liu, Matthew D Riemer, Chuangchuang Sun, Marwa Abdulhai,
Golnaz Habibi, Sebastian Lopez-Cot, Gerald Tesauro, and Jonathan How. 2021.
A policy gradient algorithm for learning to learn in multiagent reinforcement
learning. In International Conference on Machine Learning. PMLR, 5541-5550.
Dong-Ki Kim, Matthew Riemer, Miao Liu, Jakob Foerster, Michael Everett,
Chuangchuang Sun, Gerald Tesauro, and Jonathan P How. 2022. Influencing
long-term behavior in multiagent reinforcement learning. Advances in Neural
Information Processing Systems 35 (2022), 18808-18821.

Dylan P Losey, Craig G McDonald, Edoardo Battaglia, and Marcia K O’Malley.
2018. A review of intent detection, arbitration, and communication aspects of
shared control for physical human-robot interaction. Applied Mechanics Reviews
70, 1 (2018), 010804.

Xiaobai Ma, David Isele, Jayesh K Gupta, Kikuo Fujimura, and Mykel J Kochender-
fer. 2022. Recursive Reasoning Graph for Multi-Agent Reinforcement Learning.

ence detection for improving efficiency in reinforcement learning. Advances in
Neural Information Processing Systems 34 (2021), 22905-22918.

Tessa van der Heiden, Christoph Salge, Efstratios Gavves, and Herke van Hoof.
2020. Robust multi-agent reinforcement learning with social empowerment for
coordination and communication. arXiv preprint arXiv:2012.08255 (2020).
Woodrow Zhouyuan Wang, Andy Shih, Annie Xie, and Dorsa Sadigh. 2022. Influ-
encing towards stable multi-agent interactions. In Conference on robot learning.
PMLR, 1132-1143.

Ying Wen, Yaodong Yang, Rui Luo, Jun Wang, and Wei Pan. 2019. Probabilis-
tic recursive reasoning for multi-agent reinforcement learning. arXiv preprint
arXiv:1901.09207 (2019).

Annie Xie, Dylan Losey, Ryan Tolsma, Chelsea Finn, and Dorsa Sadigh. 2021.
Learning latent representations to influence multi-agent interaction. In Confer-
ence on robot learning. PMLR, 575-588.

Canjun Yang, Yuanchao Zhu, and Yanhu Chen. 2021. A review of human-machine
cooperation in the robotics domain. IEEE Transactions on Human-Machine Systems
52,1 (2021), 12-25.


https://doi.org/10.1109/IAT.2005.66

	Abstract
	1 Introduction
	2 Related Works
	3 Methods
	3.1 Causal Graphical Models
	3.2 Causal Influence Detection

	4 Experiments
	4.1 Social Navigation
	4.2 Collaborative Cooking Task

	5 Preliminary Results
	5.1 Social Navigation
	5.2 Collaborative Cooking Task

	6 Conclusion
	Acknowledgments
	References

