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ABSTRACT
Causal inference, a cornerstone in disciplines such as economics,
genomics, and medicine, is increasingly being recognized as funda-
mental to advancing the field of robotics. In particular, the ability to
reason about cause and effect from observational data is crucial for
robust generalization in robotic systems. However, the construc-
tion of a causal graphical model, a mechanism for representing
causal relations, presents an immense challenge. Currently, a nu-
anced grasp of causal inference, coupled with an understanding of
causal relationships, must be manually programmed into a causal
graphical model. To address this difficulty, we present initial results
towards a human-centered augmented reality framework for creat-
ing causal graphical models. Concretely, our system bootstraps the
causal discovery process by involving humans in selecting variables,
establishing relationships, performing interventions, generating
counterfactual explanations, and evaluating the resulting causal
graph at every step. We highlight the potential of our framework
via a physical robot manipulator on a pick-and-place task.
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1 INTRODUCTION
Causality allows for deciphering complex relationships and draw-
ing informed conclusions. This foundational understanding is be-
ginning to make significant contributions in the field of robotics,
reshaping the path of its advancement [10]. However, constructing
accurate causal models, including causal inference and graph repre-
sentations, is a daunting task. This stems from the inherent intricacy
of the interactions, often compounded by a myriad of variables,
which often remain elusive or hidden in the environment.

A causal graphical model, aka causal graph, serves as a visual
mathematical representation of the relationships between variables
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Fig. 1: The point of view of the operator from the AR overlaid physi-
cal workspace. The operator can interact with the robot and provide
additional context to aid the robot’s understanding via on-the-fly
construction of causal graphs.

in a system. Delineating the direction and structure of these rela-
tionships allows for identifying potential causes and effects, and
disentangling confounding variables [14]. By employing causal
graphs, robots can predict the outcomes of their actions more ac-
curately, make informed decisions in dynamic environments, and
adapt more fluidly to new situations with a deeper comprehension
of the underlying mechanisms [5, 9, 16].

Parallel to these advancements, the use of simulations and virtual
interfaces offers a more economical means of gathering diverse and
valuable data, which is especially conducive to improving machine
learning algorithms [11]. For example, the integration of virtual,
augmented, and mixed reality (VAMR) has shown promising results
in fostering a more intuitive and enhanced interaction between
human operators and robots (e.g., [12, 13, 15]). VAMR interfaces
provide a way for operators to have a more immersive control ex-
perience, bridging the gap between the digital and physical realms.

In this work we present preliminary results on a new framework
that leverages VAMR technologies to address the challenge of causal
graph construction, Fig. 1. To summarize, our contributions are the
following.

• We create an augmented reality (AR) interface that allows
an operator to naturally construct a causal graph on the fly.

• We provide a human-centered approach to highlight critical
information when establishing a causal graph of a scene.

• Our system ensures that a robot prioritizes human insights
during the initial stages of scene comprehension.
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Fig. 2: A causal graph representing the relationship between a robot’s
battery level 𝐵, the terrain roughness𝑇 , and the robot’s velocity𝑉
during navigation. The solid edge represents a well-established cause
and effect, while the dashed edge represents an indirect or latent
confounding variable.

2 BACKGROUND AND MOTIVATION
2.1 Causal Graphs and Causal Inference
To establish a foundation for causal inference, Pearl introduced a
number of mathematical formulations, notably structural causal
models (SCMs), intervention and do-calculus, and counterfactu-
als, to rigorously define the relationships between variables. For
example, consider a mobile robot navigation scenario. The causal
graph that represents the relationship between the robot’s velocity,
the battery level, and the roughness or difficulty of the terrain can
be represented as a directed acyclic graph (DAG), Fig. 2. In this
scenario, we can represent the relationships between the variables
using an SCM 𝑓 as

𝑉 = 𝑓 (𝐵,𝑇 ,𝑈𝑉 ), (1)
where𝑉 is the velocity, 𝐵 is the battery level,𝑇 is the terrain rough-
ness, and 𝑈𝑉 is an internal variable that is unobserved, but has an
effect on the velocity of the robot. An intervention in this situation
would be to charge the robot’s battery regardless of any other fac-
tor hence ensuring it is always full. This can be represented using
do-calculus, i.e.,

𝑃 (𝑉 | 𝑑𝑜 (𝐵 = full)) =
∑︁
𝑇

𝑃 (𝑉 | 𝐵 = full,𝑇 = 𝑡)𝑃 (𝑇 = 𝑡) . (2)

In (2), estimates of the speed of the robot are given through the
intervention by averaging over all possible values of 𝑇 . Assuming
that there are no confounding relationships between the variables,
we have effectively broken the natural causal relationship between
𝐵 and 𝑉 , while leaving the causal relationship between 𝑇 and 𝑉
intact. This is where counterfactuals can help infer the causal rela-
tionship between 𝐵 and𝑉 during an intervention, which can aid in
reinforcing or disproving causal relationships between variables.
This is important for both pre-planning, on-the-fly decision making,
and insights toward post-incident analysis. By using this mathe-
matical framework to understand the causal relationships between
variables, we can make informed predictions about a system. For
instance, in the robot navigation scenario we can use these relation-
ships to pinpoint the root cause of performance issues, pre-charge
the robot’s battery if it is expected to go through rough terrain that
will drain the battery, or adjust the robot’s behavior to achieve a
desired outcome.

2.2 Motivation
The use of causal inference is not new in robotics [4, 6–8]. Nonethe-
less, automating the creation of a viable causal graph remains an
underexplored area of research. Constructing a causal graph is hard
due to the following reasons.

Unity Game
Engine

ROS Connector

MRTK

Markers,
Sliders,
Buttons

Fig. 3: The visualization and interaction pipeline of our proposed
framework. The operator can interactwith the robot using an overlay
interface via variousmodes and provide context hinting directly onto
the workspace to aid the robot in its understanding of the scene.

• Complexity of the environment:Variables and their causal
relationships must be identified in dynamic environments
while accounting for confounding variables.

• Causation vs. correlation: The distinction between causa-
tion and correlation from observational data is not always
clear, and definitive proof of causation often requires more
data.

• High dimensionality: The number of variables in an en-
vironment can be large, which can lead to complex and/or
multiple causal graphs.

3 HUMAN-CENTERED CAUSAL GRAPHICAL
MODELS

In this section, we delineate the specific methodologies and proce-
dures employed to actualize human-centered causal graphs. First,
we present a brief overview of our framework’s components. Then,
we provide a detailed description of each component and the com-
munication pipeline between them.

3.1 Component Overview and Consideration
Our framework to facilitate robotic understanding through human-
centered causal graph construction is composed of three primary
components: (i) an AR-capable headset, (ii) a software interface to
visualize the robot’s perception and allow the operator to interact
with the robot, and (iii) a control interface to realize the operator’s
commands and interventions. Each of these components plays a
pivotal role in the seamless execution of the system, providing
both unique and complementary functionalities. Fig. 3 details the
overall system architecture and the transmission pipeline between
the components.

For the AR headset, we opted for the Microsoft HoloLens 2 due to
its unparalleled capabilities. Its commercial availability ensures ease
of access and its extensive API support, via Microsoft’s Mixed Real-
ity Toolkit (MRTK) [1], offers a versatile platform for development
and integration. The HoloLens 2 is a self-contained head-mounted
display (HMD) that is capable of spatial mapping and tracking,
while also providing a projected holographic display. It permits
the operator to operate in a hands-free, untethered manner. This
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feature is crucial for our work for two primary reasons. First, be-
ing able to superimpose additional information directly onto the
workspace enhances the operator’s understanding of the robot’s
perception of the environment. This is vital when visualizing the
implications of the causal graph on the robot’s physical actions in
real-time. Second, the ability to operate in a hands-free manner
through different modalities (i.e., direct-hand input, eye-tracking,
and voice commands) allows the operator to swiftly and naturally
interact with both the robot’s actions and the underlying causal
structure. This ensures that the operator can manipulate the causal
graph, adjust parameters, and interact with robot perception and
environment understanding without the constraints of traditional
input methods.

3.2 Interaction and Visualization Modalities
Relying on the HoloLens 2’s hand-tracking capabilities, our system
allows the operator to interact with the robot and environment
through a number of mechanisms. This includes direct manipula-
tion of the robot’s joint positions via virtual sliders and command
buttons, providing a planning context such as desired end-effector
positions and approach vectors, and the ability to query forward and
inverse kinematics solutions. Furthermore, compared to traditional
VR devices where operator interactions are bound to handheld
controllers and the operator’s vision is obstructed by a display, the
HoloLens 2 offers greater interaction and visualization capabilities.

3.3 Causal Graph Construction and
Intervention

In our human-centered framework, the focus is primarily on the
dynamic construction and intervention of causal graphs. To this
end, we leveraged Unity [3] to render causal structures as 3D objects
in the AR space allowing the operator to interact with the causal
graph directly. These graphical constructs, composed of nodes and
edges, offer a visual guide that aids the operator in deciphering the
complex interplay between robot actions and environmental cues.

Nodes, visualized as tangible entities within the AR landscape,
symbolize specific events or actions that the robot can detect or
perform. Their design incorporates distinct visual features, such
as shades, opacities, and pulsations, communicating their present
state or relevance. On the other hand, edges provide visual insights
into the direction, strength, or likelihood of causal linkages. These
are often characterized by variations in their thickness, texture,
or color gradient, allowing users to quickly comprehend causal
dependencies.

Within the immersive world facilitated by the HMD, operators
can actively modify and intervene in the causal relationships by
adding, removing, or modifying the nodes and edges of the cur-
rent causal structure. The device’s advanced hand-tracking feature
supports intuitive gestures, such as pinching, swiping, or rotating,
enabling users to adjust causality strength, node prominence, or
even the direction of a causal link. Furthermore, the mobility of the
HMD lets an operator freely move around the environment and
provide context hints directly onto the robot workspace, accom-
modating seamless adjustments and experiments with the causal
graph.

3.4 Physical Robot Actuation and Simulation
The physical robot actuation and simulation components of our
system, driven by ROS 2 Humble [2], facilitate communication be-
tween the robot and Unity software layers. This allows the operator
to interact with the robot and environment through the AR inter-
face. Concretely, it enables the translation of intricate directives
from a causal graph into precise physical movements of the robot,
ensuring adaptability and dexterity in diverse real-world scenarios.

4 EVALUATION
4.1 Causal Graph Creation
Using a UR5e robot arm provisioned with a Robotiq 2F-85 grip-
per and tasked with picking up a finite set of known objects and
placing them at a desired location, we construct a causal graph
to represent the relationship between the robot’s actions and the
environment. To achieve this, the potential variables related to our
task are represented as follows.

(1) 𝑅𝑜𝑏𝑜𝑡 : The robot state.
(2) 𝐺𝑟𝑖𝑝𝑝𝑒𝑟 : The gripper state.
(3) 𝑇𝑎𝑟𝑔𝑒𝑡 : The robot’s motion planning to achieve the goal

position.
(4) 𝐺𝑜𝑎𝑙 : The desired object placement location.
(5) 𝑇𝑦𝑝𝑒: The object’s type.
(6) 𝑊𝑒𝑖𝑔ℎ𝑡 : The object’s weight (light - heavy).
(7) 𝑆𝑖𝑧𝑒 : The object’s size (small - large).
(8) 𝑇𝑒𝑥𝑡𝑢𝑟𝑒: The object’s texture (smooth - rough).
(9) 𝑅𝑖𝑔𝑖𝑑𝑖𝑡𝑦: The object’s rigidness (soft - hard).
(10) 𝑆𝑢𝑐𝑐𝑒𝑠𝑠: The success rate of a pick-and-place sequence.
For the purpose of demonstration, we construct this causal graph

under the assumption that external factors (e.g., robot power loss,
environmental disruptions, etc.) do not occur and are insulated
from the causal representation. As shown in Fig. 4, the relation-
ships between the variables can be visually represented as a graph
for an easier understanding of potential causality and the interplay
between nodes. Within the graph, each edge represents a direct
causal relationship between the robot and the operating environ-
ment. For example, if the weight of the object changes then it could
influence the behavior of the gripper (e.g., the gripper force or grasp
vector).

Our framework can directly create the causal graph in the AR
space, Fig. 5. The operator interacts via the AR interface to label
the nodes and edges, set the content of each node, and adjust the
strength of each edge. The operator can also communicate with
the robot and the environment through the AR interface to obtain
additional information and context to aid in the construction of the
causal graph. The causal graph can then be parsed and interpreted
by the motion planning backend during the planning step to ensure
that the robot’s actions are consistent with the state of the graph.
Algorithm 1 demonstrates how the robot consumes a causal graph
generated by the operator during each motion planning step.

4.2 Causal Graph Intervention
For a pick-and-place task, we use our constructed causal graph to
evaluate whether the relationships between the defined variables
are valid, which in turn can be inferred by the robot’s performance.
For instance, if the robot consistently fails to pick up a cordless drill
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Fig. 4: An example of the relationships between the operator-
identified variables for a pick-and-place task. Each edge corresponds
to a direct causal relationship between the connected variables.
Changes in the source of an edge have a direct consequence on the
target of an edge.

Algorithm 1 Human-in-the-loop Causal Graph Iteration
Require: Human has initialized the causal graph
Ensure: Causal graph is DAG, all nodes have properties
1: while true do
2: if operator is modifying causal graph then
3: Wait
4: else
5: Execute with guidance from causal graph
6: Check execution status
7: if status is SUCCESS then
8: Continue
9: else
10: Notify Operator
11: Ask Continue?
12: end if
13: end if
14: end while

but it has no issues with other objects, then we can be relatively
certain that several known properties or relationships (e.g., weight,
texture, etc.) may be detrimentally affecting the robot. With this
human-in-the-loop approach, we can quickly devise an interven-
tion procedure to decide if certain variables are causing degraded
performance. For example, we can intervene by setting the object’s
weight to a specific value and then benchmark the robot’s perfor-
mance under the assumption that the robot did not account for the
object’s weight properly.

If the robot’s performance is influenced by the weight of the
object, then we can make adjustments to the robot’s behavior to
ensure optimal performance (e.g., adjusting the pick points, etc.).
Alternatively, should the intervention be inconclusive, then we
can intervene by fixing other object properties to a specific value
and then benchmark the robot’s performance. However, further
investigation may be required to understand the exact reason. For
example, the gripper might not be suited for the cordless drill’s

Fig. 5: The operator interacting with the robot and environment
through the AR interface to construct a causal graph. Nodes and
edges are visualized and can bemanipulated directly in the AR space.

shape, or the perception system may not be identifying the drill’s
correct pick points. Since our framework has the capability to adjust
causal graph structure on the fly, we can quickly update the graph
to reflect the new structure thus allowing the robot to make more
informed decisions.

4.3 Discussion
Our framework provides advantages over traditional methods for
constructing causal graphs. The AR interface allows an operator
to interact with the robot and the environment directly and more
intuitively, making it easier for humans to understand the system’s
dynamics. It also presents a visual understanding of causal relation-
ships, which allows operators to make informed decisions on how
to optimize the system. For example, the operator can visualize in
real time where interventions might be needed, or where potential
failures could occur.

Constructing causal graphs this way introduces a level of mod-
ularity and scalability. For instance, causal elements can be easily
adjusted to fit the needs of the system or the entire graph can
be replaced by constructing a replacement from scratch. Yet, this
methodology is not without its limitations. A criticism of causal
graphs is that they can be an oversimplification of the environment
and interplay between variables. Real-world robotic operations
may involve numerous subtle interactions, not all of which can be
accurately captured in a graph.

5 CONCLUSION
This paper provided preliminary results on a human-centered ap-
proach for automating the construction of causal graphical models.
Our framework combines the strengths of VAMR and simulation
technologies to address the dilemma of bootstrapping the creation
of a causal graph. Furthermore, we highlighted the ability to vi-
sualize, intervene, and update causal graphs on a physical robot
for a real-world pick-and-place task. In the future we will work
on addressing the challenges of oversimplification and iteratively
updating causal graphs.
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